Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Modelling and Data A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Modelling and Data Analysis
Article . 2019 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Modelling and Data Analysis
Article
License: CC BY NC
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient Optimization Methods in Machine Learning for the Identification of Dynamic Systems Parameters

Градиентные методы оптимизации в машинном обучении идентификации параметров динамических систем
Authors: A.V. Panteleev; A.V. Lobanov;

Gradient Optimization Methods in Machine Learning for the Identification of Dynamic Systems Parameters

Abstract

The article considers one of the possible ways to solve the problem of estimating the unknown parameters of dynamic models described by differential-algebraic equations. Parameters are estimated based on the results of observations of the behavior of the mathematical model. Their values are found as a result of minimizing the criterion that describes the total quadratic deviation of the state vector coordinates from the exact values obtained at measurements at different points in time. The parallelepiped type constraints are imposed on the parameter values. To solve the optimization problem, it is proposed to use gradient optimization methods used in machine learning procedures: the stochastic gradient descent method, the classical moment method, the Nesterov accelerated gradient method, the adaptive gradient method, root mean square propagation method, the adaptive moment estimation method, the adaptive estimation method modification, Nesterov–accelerated adaptive moment estimation method. An example of identification of the parameters of a linear mathematical model describing a change in the characteristics of a chemical process is shown, which demonstrates the comparative effectiveness of the optimization methods of the selected group. The methods used to search for an extremum do not guarantee finding a result – a global extremum, but allow you to get a solution of good enough quality for an acceptable time. The results of calculations by all the listed optimization methods are presented. Recommendations on the selection of method parameters are given. The obtained numerical results demonstrated the effectiveness of the proposed approach. The found approximate values of the estimated parameters slightly differ from the best known solutions obtained by other methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid