
doi: 10.2312/sr.20211287
We introduce a novel method to generate sample sequences that are progressively stratified both in high dimensions and in lower-dimensional projections. Our method comes from a new observation that Owen-scrambled quasi-Monte Carlo (QMC) sequences can be generated as stratified samples, merging the QMC construction and random scrambling into a stochastic algorithm. This yields simpler implementations of Owen-scrambled Sobol', Halton, and Faure sequences that exceed the previous state-of-the-art sample-generation speed; we provide an implementation of Owen-scrambled Sobol' (0,2)-sequences in fewer than 30 lines of C++ code that generates 200 million samples per second on a single CPU thread. Inspired by pmj02bn sequences, this stochastic formulation allows multidimensional sequences to be augmented with best-candidate sampling to improve point spacing in arbitrary projections. We discuss the applications of these high-dimensional sequences to rendering, describe a new method to decorrelate sequences while maintaining their progressive properties, and show that an arbitrary sample coordinate can be queried efficiently. Finally we show how the simplicity and local differentiability of our method allows for further optimization of these sequences. As an example, we improve progressive distances of scrambled Sobol' (0,2)-sequences using a (sub)gradient descent optimizer, which generates sequences with near-optimal distances.
CCS Concepts: Mathematics of computing --> Stochastic processes; Computations in finite fields; Mathematical software performance; Computing methodologies --> Rendering; Ray tracing
Eurographics Symposium on Rendering - DL-only Track
Andrew Helmer, Per Christensen, and Andrew Kensler
Integration
21
33
Mathematical software performance, Computing methodologies --> Rendering, Mathematics of computing --> Stochastic processes, Ray tracing, Computations in finite fields
Mathematical software performance, Computing methodologies --> Rendering, Mathematics of computing --> Stochastic processes, Ray tracing, Computations in finite fields
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
