
Надано алгоритм розрахунку матеріального і теплового балансів регенерації відпрацьованого розчину в середовищі Excel з варіюванням концентраційних параметрів по розчину. Апроксимовано залежності рівноважного парціального тиску СО2 над 20 %-ним розчином моноетаноламіну залежно від ступеня карбонізації та температури регенерації. Числовим інтегруванням розраховано двосекційний тарілчастий регенератор. The simulation object is a two-flow scheme for gas purification from CO2 with monoethanolamine (MEA) solution and with waste solution regeneration in two simultaneously-working recuperators, the productivity of ammonia is 1360 tons per day. Our algorithm considers the temperature fluctuations and component concentrations in liquid phases at different points of the desorber. The algorithm of material and thermal balances calculation is implemented in the Excel. The concentration of CO2 at the outlet of the regenerator is 81.3 %. The specific heat consumption for the regeneration of 1 m3 of CO2 is 4.02 MJ, which corresponds to industrial data. For kinetic calculation of the desorber, the reference dependences of the equilibrium partial pressure of CO2 over the 20 % MEA solution are approximated, depending on the degree of carbonization and the temperature in the solution. The number of plates in two-section plate desorber is calculated by numerical integration. The control calculation is performed with the following initial data. Gas temperature – 313 K at the output of the separator; the separator output pressure – 1,7 atm. Gas temperature – 343 K at the output of the regenerator; the regenerator output pressure – 1,7 atm. The carbonization degree of the MEA solution, kmol per kmol MEA: waste solution – 0,67; roughly recovered solution – 0,35; finely recovered solution – 0,1. Temperature, K: on the top plate – 343; output of roughly regenerated solution – 388; output of finely regenerated solution – 398. The plates' quantity calculation gives 33. This algorithm can be used for analyzing productivity of existing plants, and also will be useful for students' learning of the gas purification process in schemes designing
моноетаноламін, тарілчастий десорбер, технологічний газ, кінетика і термодинаміка десорбції, оксид карбону (IV), monoethanolamine, kinetics and thermodynamics of desorption,, carbon oxide (IV), process gas, plate desorber
моноетаноламін, тарілчастий десорбер, технологічний газ, кінетика і термодинаміка десорбції, оксид карбону (IV), monoethanolamine, kinetics and thermodynamics of desorption,, carbon oxide (IV), process gas, plate desorber
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
