
Le problème de trajectoire du robot mobile cherche à trouver la trajectoire la plus courte optimale du point de départ au point cible sans collision pour un robot mobile. C'est un problème populaire en robotique et dans cet article, l'environnement est considéré comme statique et représenté comme une carte quadrillée bidirectionnelle. En outre, la nouvelle méthode optimale Dhouib-Matrix-SPP (DM-SPP) est appliquée pour créer le chemin le plus court optimal pour un robot mobile dans un environnement statique. DM-SPP est une méthode gourmande basée sur une navigation de ligne de colonne dans la matrice de distance et caractérisée par sa rapidité à résoudre des graphiques clairsemés. L'analyse comparative est réalisée en appliquant DM-SPP sur treize cas de test et en comparant ses résultats aux résultats donnés par quatre métaheuristiques : le Max-Min Ant System, le Ant System avec mesures punitives, le A* et le Improved Hybrid A*. Les résultats obtenus à partir de différents scénarios indiquent que la méthode DM-SPP proposée peut rapidement surpasser les quatre méthodes d'intelligence artificielle prédéfinies.
El problema de la ruta del robot móvil busca encontrar la ruta más corta óptima desde el punto de partida hasta el punto de destino sin colisiones para un robot móvil. Este es un tema popular en robótica y en este documento el entorno se considera estático y se representa como un mapa de cuadrícula bidireccional. Además, se aplica el novedoso método óptimo Dhouib-Matrix-SPP (DM-SPP) para crear el camino más corto óptimo para un robot móvil en un entorno estático. DM-SPP es un método codicioso basado en una navegación por filas de columnas en la matriz de distancias y caracterizado por su rapidez para resolver gráficos dispersos. El análisis comparativo se realiza aplicando DM-SPP en trece casos de prueba y comparando sus resultados con los resultados dados por cuatro metaheurísticas el Max-Min Ant System, el Ant System con medidas punitivas, el A* y el Improved Hybrid A*. Los resultados adquiridos de diferentes escenarios indican que el método DM-SPP propuesto puede superar rápidamente los cuatro métodos predefinidos de inteligencia artificial.
The Mobile Robot Path Problem looks to find the optimal shortest path from the starting point to the target point with collision-free for a mobile robot. This is a popular issue in robotics and in this paper the environment is considered as static and represented as a bidirectional grid map. Besides, the novel optimal method Dhouib-Matrix-SPP (DM-SPP) is applied to create the optimal shortest path for a mobile robot in a static environment. DM-SPP is a greedy method based on a column row navigation in the distance matrix and characterized by its rapidity to solve sparse graphs. The comparative analysis is conducted by applying DM-SPP on thirteen test cases and comparing its results to the results given by four metaheuristics the Max-Min Ant System, the Ant System with punitive measures, the A* and the Improved Hybrid A*. The outcomes acquired from different scenarios indicate that the proposed DM-SPP method can rapidly outperform the four predefined artificial intelligence methods.
تتطلع مشكلة مسار الروبوت المحمول إلى العثور على أقصر مسار أمثل من نقطة البداية إلى النقطة المستهدفة مع عدم وجود تصادم للروبوت المحمول. هذه مشكلة شائعة في الروبوتات وفي هذه الورقة تعتبر البيئة ثابتة وممثلة كخريطة شبكة ثنائية الاتجاه. إلى جانب ذلك، يتم تطبيق الطريقة المثلى الجديدة Dhouib - Matrix - SPP (DM - SPP) لإنشاء أقصر مسار مثالي للروبوت المحمول في بيئة ثابتة. DM - SPP هي طريقة جشعة تعتمد على التنقل في صف العمود في مصفوفة المسافة وتتميز بسرعتها في حل الرسوم البيانية المتفرقة. يتم إجراء التحليل المقارن من خلال تطبيق DM - SPP على ثلاث عشرة حالة اختبار ومقارنة نتائجها بالنتائج التي قدمتها أربع دراسات استكشافية لنظام Max - Min Ant، ونظام Ant مع التدابير العقابية، و A* والهجين المحسن A*. تشير النتائج المكتسبة من سيناريوهات مختلفة إلى أن طريقة DM - SPP المقترحة يمكن أن تتفوق بسرعة على أساليب الذكاء الاصطناعي الأربعة المحددة مسبقًا.
Shortest path problem, Artificial intelligence, Path Planning, Robot, Robot Navigation, Aerospace Engineering, FOS: Mechanical engineering, Operations research, Control of Nonholonomic Mobile Robots, Simultaneous Localization and Mapping, Sampling-Based Motion Planning Algorithms, Probabilistic Roadmaps, Mobile Robots, Engineering, Cognition, Mobile robot, Psychology, Dhouib-Matrix-SPP, Path planning, Computer network, Human–computer interaction, QA75.5-76.95, Path (computing), Computer science, Optimal Motion Planning, FOS: Psychology, Control and Systems Engineering, Electronic computers. Computer science, Computer Science, Physical Sciences, Motion planning, Computer Vision and Pattern Recognition, Neuroscience
Shortest path problem, Artificial intelligence, Path Planning, Robot, Robot Navigation, Aerospace Engineering, FOS: Mechanical engineering, Operations research, Control of Nonholonomic Mobile Robots, Simultaneous Localization and Mapping, Sampling-Based Motion Planning Algorithms, Probabilistic Roadmaps, Mobile Robots, Engineering, Cognition, Mobile robot, Psychology, Dhouib-Matrix-SPP, Path planning, Computer network, Human–computer interaction, QA75.5-76.95, Path (computing), Computer science, Optimal Motion Planning, FOS: Psychology, Control and Systems Engineering, Electronic computers. Computer science, Computer Science, Physical Sciences, Motion planning, Computer Vision and Pattern Recognition, Neuroscience
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
