
Let $ F$ be a real valued generalized biaxially symmetric potentials (GBASP) defined on the Caratheodory domain on $ C^N$. Let $ L_\mu^p(D)$ be the class of all functions $ F$ holomorphic on $ D$ such that $ \parallel F\parallel_{D,p}=[\int_D\mid F\mid^pd\mu]^{1\over p}$. Where $ \mu$ is the positive finite, Boral measure with regular asymptotic distribution on $ C^N$. For $ F\in L_{\mu}^p(D)$, set $ E_n^p(F)=\inf\{\parallel F-P\parallel_{D,p}:P\in H_n\}$, $ H_n$ consist of all real biaxisymmetric harmonic polynomials of degree at most $ 2n$. The paper deals with the growth of entire function GBASP in terms of approximation error in $ L_{\mu}^p$-norm on $ D$. The analysis utilizes the Bergman and Gilbert integral operator method to extend results from classical function theory on the best polynomial approximation of analytic functions of several complex variables. Finally we prove a generalized decomposition theorem in a new way. The paper is the generalization of the concepts of generalized growth parameters to entire functions on Caratheodory domains on $ C^N$ (instead of entire holomorphic functions on $ C$) for slow growth.
Approximation by polynomials, Approximation by arbitrary linear expressions, Potentials and capacities, extremal length and related notions in higher dimensions
Approximation by polynomials, Approximation by arbitrary linear expressions, Potentials and capacities, extremal length and related notions in higher dimensions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
