Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Osuva (University of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Research.fi
https://dx.doi.org/10.60692/qk...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/f4...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Voltage dip propagation in renewable‐rich power systems utilizing grid‐forming converters

انتشار تراجع الجهد في أنظمة الطاقة المتجددة الغنية باستخدام محولات تشكيل الشبكة
Authors: Rafat Aljarrah; Mazaher Karimi; Rasoul Azizipanah‐Abarghooee; Qusay Salem; Sahban W. Alnaser;

Voltage dip propagation in renewable‐rich power systems utilizing grid‐forming converters

Abstract

Abstract The growing integration of converter‐interfaced renewable energy sources (RESs) utilizing Grid‐Following (GFL) converters has displaced conventional synchronous generators (SGs) in central generation units. This shift presents challenges, including diminished system inertia, lower fault levels, and implications for system strength and network resilience. The propagation of voltage dips, particularly during disturbances like system Short Circuit (SC) faults, is adversely affected by the increased penetration of such RESs. This is attributed to the limited support capability of these sources and their distinct SC response compared to SGs. In response to these challenges, Grid‐Forming (GFM) converters emerge as a promising technology equipped with advanced functionalities that emulate SG operation. Consequently, they hold potential for mitigating the effects of voltage dip propagation in renewable‐rich power systems. This study aims to assess the impact of employing GFM converters in renewable‐rich power systems on voltage dip propagation across the network. The authors’ investigation begins by examining the SC response of GFM converters and comparing it with the responses of traditional GFL converters and SGs. The paper proceeds to analyze voltage dip propagation, considering various penetration scenarios involving RESs based on GFL and GFM converters. The IEEE 9‐BUS test system, implemented in the DIgSILENT PowerFactory software, serves as the basis for these evaluations. Through extensive simulations and analysis, the authors’ research provides valuable insights into the effectiveness of GFM converters in enhancing the network's response to voltage dips.

Country
Finland
Keywords

Renewable energy, Distributed Power Generation, Inverter-Based DGs, TJ807-830, Geometry, fi=Sähkötekniikka|en=Electrical Engineering|, Quantum mechanics, Renewable energy sources, Electric power system, transmission networks, Engineering, Islanding Detection Methods for Distributed Generations, wind turbines, Modular Multilevel Converters, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Electrical and Electronic Engineering, Grid, renewable energy sources, Electronic engineering, Physics, power system faults, Voltage, Voltage Source Converters, Converters, Power (physics), Computer science, power convertors, Control and Systems Engineering, Electrical engineering, Physical Sciences, Control and Synchronization in Microgrid Systems, Power Quality Disturbance Detection, Mathematics, Modular Multilevel Converters in HVDC Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Top 10%
Green
gold