Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematical Geoscie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Geosciences
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder

Authors: Yihui Xiong; Renguang Zuo;

Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder

Abstract

Deep neural networks perform very well in learning high-level representations in support of multivariate geochemical anomaly recognition. Geochemical exploration data typically contain a proportion of large variations and missing values, which motivated us to construct a network architecture optimized to deal with these data. Our approach adopted a stacked convolutional denoising autoencoder (SCDAE) to extract robust features and decreased the level of sensitivity to partially corrupted data, that is, input data that are partially missing. SCDAE parameters, which include the network depth, number of convolution layers, number of convolution kernels, and convolution kernel size, were optimized using trial-and-error experiments. The optimal SCDAE architecture was then used to recognize multivariate geochemical anomalies related to mineralization in a case study in southwestern Fujian Province, based on the differences in the reconstruction errors between sample populations. The spatial distribution of high reconstruction errors in the anomaly map was closely related to most known Fe deposits, indicating the effectiveness of the SCDAE at recognizing geochemical anomalies related to Fe mineralization. A comparative study between the SCDAE and a stacked convolutional autoencoder (SCAE) with different corruption levels showed that the SCDAE exhibited reduced sensitivity to stochastic disturbances with different corruption proportions, and had an enhanced ability to recognize geochemical anomalies varying in a reasonable range. The robustness of the SCDAE makes it applicable to a wide variety of geochemical exploration scenarios, particularly in areas with incomplete or missing data.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!