Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-CEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Conference object . 2022
Data sources: HAL-CEA
https://doi.org/10.5220/001132...
Article . 2022 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
http://dx.doi.org/10.5220/0011...
Conference object
Data sources: Sygma
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Hybrid Model for Intrusion Detection Systems

Authors: Kaaniche, Nesrine; Boudguiga, Aymen; Gonzalez-Granadillo, Gustavo;

Efficient Hybrid Model for Intrusion Detection Systems

Abstract

This paper proposes a new hybrid ML model that relies on both K-Means clustering and the Variational Bayesian Gaussian Mixture model to efficiently detect unknown network attacks. The proposed model first classifies the input data into various clusters using K-Means. Then, it identifies anomalies in those clusters using the Variational Bayesian Gaussian Mixture model, to be then classified as unknown. The proposed model shows promising results when identifying whether a data point is an attack or not with an F1 score of up to 91\%, such that the Variational Bayesian Gaussian Mixture model detected up to 86\% of unknown attacks. The conducted experiments shows acceptable performances, where the predictive pipeline took around 2.42 seconds to be processed.

Country
France
Keywords

IDS K-Means Bayesian Model Hybrid Approach Supervised and Unsupervised Learning, Bayesian Model, Supervised and Unsupervised Learning, K-Means, Hybrid Approach, IDS, [INFO] Computer Science [cs]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
Funded by