Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Resources Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22541/essoa...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Introducing Pour Points: Characteristics and hydrological significance of a rainfall-concentrating mechanism in a water-limited woodland ecosystem

Authors: Ashvath S. Kunadi; Tim Lardner; Richard P. Silberstein; Matthias Leopold; Nik Callow; Erik Veneklaas; Aryan Puri; +2 Authors

Introducing Pour Points: Characteristics and hydrological significance of a rainfall-concentrating mechanism in a water-limited woodland ecosystem

Abstract

The interception of rainfall by plant canopies alters the depth and spatial distribution of water arriving at the soil surface, and thus the location, volume, and depth of infiltration. Mechanisms like stemflow are well known to concentrate rainfall and route it deep into the soil, yet other mechanisms of flow concentration are poorly understood. This study characterises pour points, formed by the detachment of water flowing on the lower surface of a branch, using a combination of field observations in Western Australian banksia woodlands and rainfall simulation experiments on Banksia menziesii branches. We aim to establish the hydrological significance of pour points in a water-limited woodland ecosystem, along with the features of the canopy structure and rainfall that influence pour point formation and fluxes.Pour points were common in the woodland and could be identified by visually inspecting trees. Water fluxes at pour points were upto 15 times rainfall and were usually comparable to or greater than stemflow. Soil water content beneath pour points was greater than in adjacent control profiles, with 20-30% of seasonal rainfall volume infiltrated into the top 1m of soil beneath pour points, compared to 5% in controls. Rainfall simulations showed that pour points amplified the spatial heterogeneity of throughfall, violating water balance closure assumptions. The simulation experiments demonstrated that pour point fluxes depend on the interaction of branch angle and foliation for a given branch architecture. Pour points can play a significant part in the water balance, depending on their density and rainfall concentration ability.

Country
Australia
Keywords

rainfall interception, throughfall heterogeneity, 550, throughfall concentration, Environmental sciences, Water Resource Management, preferential infiltration, rainfall simulation with branches, Mediterranean ecosystem, Physical Sciences and Mathematics, GE1-350, Environmental Sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold