Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
TUHH Open Research - Research Data TUHH
Article . 2024
License: CC BY
Data sources: Datacite
TUHH Open Research (TORE)
Conference object . 2024
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IGMaxHS -- An Incremental MaxSAT Solver with Support for XOR Clauses

Authors: Lübke, Ole;

IGMaxHS -- An Incremental MaxSAT Solver with Support for XOR Clauses

Abstract

Recently, a novel, MaxSAT-based method for error correction in quantum computing has been proposed that requires both incremental MaxSAT solving capabilities and support for XOR constraints, but no dedicated MaxSAT solver fulfilling these criteria existed yet. We alleviate that and introduce IGMaxHS, which is based on the existing solvers iMaxHS and GaussMaxHS, but poses fewer restrictions on the XOR constraints than GaussMaxHS. IGMaxHS is fuzz tested with xwcnfuzz, an extension of wcnfuzz that can directly output XOR constraints. As a result, IGMaxHS is the only solver that reported neither incorrect unsatisfiability verdicts nor invalid models nor incoherent cost model combinations in a final fuzz testing comparison of all three solvers with 10000 instances. We detail the steps required for implementing Gaussian elimination on XOR constraints in CDCL SAT solvers, and extend the recently proposed re-entrant incremental MaxSAT solver application program interface to allow for incremental addition of XOR constraints. Finally, we show that IGMaxHS is capable of decoding quantum color codes through simulation with the Munich Quantum Toolkit.

Presented at the 15th International Workshop on Pragmatics of SAT (PoS 2024, see https://www.pragmaticsofssat.org/2024/ )

Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Incremental MaxSAT, Fuzz Testing, XOR Constraints, Computer Science, Information and General Works::003: Systems Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green