Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistics in Medicine
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.60692/9v...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/zn...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY NC SA
Data sources: Datacite
versions View all 11 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Defining and estimating effects in cluster randomized trials: A methods comparison

تحديد وتقدير الآثار في التجارب العشوائية العنقودية: مقارنة الأساليب
Authors: Alejandra Benitez; Maya Petersen; Mark J. van der Laan; Nicole Santos; Elizabeth Butrick; Dilys Walker; Rakesh Kumar Ghosh; +3 Authors

Defining and estimating effects in cluster randomized trials: A methods comparison

Abstract

Across research disciplines, cluster randomized trials (CRTs) are commonly implemented to evaluate interventions delivered to groups of participants, such as communities and clinics. Despite advances in the design and analysis of CRTs, several challenges remain. First, there are many possible ways to specify the causal effect of interest (eg, at the individual‐level or at the cluster‐level). Second, the theoretical and practical performance of common methods for CRT analysis remain poorly understood. Here, we present a general framework to formally define an array of causal effects in terms of summary measures of counterfactual outcomes. Next, we provide a comprehensive overview of CRT estimators, including thet‐test, generalized estimating equations (GEE), augmented‐GEE, and targeted maximum likelihood estimation (TMLE). Using finite sample simulations, we illustrate the practical performance of these estimators for different causal effects and when, as commonly occurs, there are limited numbers of clusters of different sizes. Finally, our application to data from the Preterm Birth Initiative (PTBi) study demonstrates the real‐world impact of varying cluster sizes and targeting effects at the cluster‐level or at the individual‐level. Specifically, the relative effect of the PTBi intervention was 0.81 at the cluster‐level, corresponding to a 19% reduction in outcome incidence, and was 0.66 at the individual‐level, corresponding to a 34% reduction in outcome risk. Given its flexibility to estimate a variety of user‐specified effects and ability to adaptively adjust for covariates for precision gains while maintaining Type‐I error control, we conclude TMLE is a promising tool for CRT analysis.

Keywords

FOS: Computer and information sciences, Epidemiology, Social Sciences, Cluster (spacecraft), Sample size determination, Estimator, Social psychology, Mathematical Sciences, Applications of statistics to biology and medical sciences; meta analysis, data-adaptive adjustment, Estimating equations, Methods for Handling Missing Data in Statistical Analysis, Psychological intervention, Observational study, Cluster Analysis, Psychology, clustered data, Gee, Randomized Controlled Trials as Topic, Psychiatry, Statistics, Mixed-Effects Models, Covariate, Programming language, Causality, FOS: Psychology, Economics, Econometrics and Finance, stat.ME, Counterfactual thinking, Physical Sciences, Cluster randomised controlled trial, Public Health and Health Services, Premature Birth, Medicine, Female, Economics of Health Care Systems and Policies, Health and social care services research, Statistics and Probability, Economics and Econometrics, 330, Methods for Causal Inference in Observational Studies, Statistics & Probability, Flexibility (engineering), 610, Article, Methodology (stat.ME), FOS: Economics and business, Health Sciences, FOS: Mathematics, Humans, Computer Simulation, Econometrics, Hierarchical data, Statistics - Methodology, Infant, Newborn, Infant, Newborn, cluster randomized trials, Computer science, Type I and type II errors, 8.4 Research design and methodologies (health services), Good Health and Well Being, group randomized trials, Sample Size, hierarchical data, Generic health relevance, Generalized estimating equation, targeted maximum likelihood estimation, Mathematics, Causal inference

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid