
The manufacturing process of wide-band-gap matrix photodetector devices and miniaturization of their individual pixels gave rise to increased demands on the material quality and research methods. In the present paper we propose using the methods of atomic-force microscopy to study the local distribution of electrical properties of the V-defects that form in epitaxial films of HgCdTe during their growth process via molecular beam epitaxy. We demonstrate that a complex approach to studying the electrical properties of a predefined region of a V-defect allows one to obtain more detailed information on its properties. Using scanning spreading resistance microscopy, we show that, for a V-defect when the applied bias is increased, the surface area that participates in the process of charge carrier transfer also increases almost linearly. The presence of a potential barrier on the periphery of individual crystal grains that form the V-defect interferes with the flow of current and also affects the distribution of surface potential and capacitive contrast.
контактная разность потенциалов, теллурид кадмия ртути, зондовая микроскопия, тонкие пленки, молекулярно-лучевая эпитаксия, Кельвина зонд, метод, v-дефекты
контактная разность потенциалов, теллурид кадмия ртути, зондовая микроскопия, тонкие пленки, молекулярно-лучевая эпитаксия, Кельвина зонд, метод, v-дефекты
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
