
To obtain peak performance from optimization algorithms, it is required to set appropriately their parameters. Frequently, algorithm parameters can take values from the set of real numbers, or from a large integer set. To tune this kind of parameters, it is interesting to apply state-of-the-art continuous optimization algorithms instead of using a tedious, and error-prone, hands-on approach. In this paper, we study the performance of several continuous optimization algorithms for the algorithm parameter tuning task. As case studies, we use a number of optimization algorithms from the swarm intelligence literature.
Informatique mathématique
Informatique mathématique
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
