Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vibration and Control
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A numerical and scaled experimental study on ride comfort enhancement of a high-speed rail vehicle through optimizing traction rod stiffness

Authors: Vahid Bokaeian; Mohammad Ali Rezvani; Robert Arcos;

A numerical and scaled experimental study on ride comfort enhancement of a high-speed rail vehicle through optimizing traction rod stiffness

Abstract

In this research, the effect of rail vehicle carbody’s flexural modes on the ride comfort of an example high-speed railway vehicle is investigated. The vehicle is modeled as a rigid multi-body system, where the rigid body vertical, longitudinal, pitch, and roll degrees of freedom of the carbody and bogie frames and the rigid body vertical and roll degrees of freedom of the wheelsets are considered. An Euler–Bernoulli beam theory is used to account for the flexural motion of the carbody. The longitudinal interaction between carbody and bogie through the traction rod is modeled as a nonlinear spring element. The corresponding equations of motion of the system in the frequency domain are obtained by using the equivalent linearization method. The effect of the traction rod is explored by using this model. Also, the optimal stiffness of the traction rod element that minimizes the flexural vibrations of the carbody is obtained through a genetic algorithm. With the optimal stiffness for the traction rod, the ride quality index at the center of the carbody floor is improved by 41% at a speed of 300 km/h. For the validation of numerical results, a scaled model of the vehicle with a scale factor of 24.5 was constructed, and its associated results are presented. The model was excited by random input signals, which were generated based on the power spectral density of the track irregularity function. The agreement between the simulation results and the scaled experimental outcome when compared with the measured data from other sources is found to be satisfactory. In the framework of the physical scaled model, the filtering effect due to the vehicle bogie base is also examined.

Keywords

Trens d'alta velocitat, Frequencies of oscillating systems, Railroad cars--Dynamics, :Enginyeria mecànica::Mecànica::Vibracions mecàniques [Àrees temàtiques de la UPC], Ferrocarrils -- Vibració, Ride comfort, Àrees temàtiques de la UPC::Enginyeria mecànica::Disseny i construcció de vehicles::Ferrocarrils, :Enginyeria mecànica::Disseny i construcció de vehicles::Ferrocarrils [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria mecànica::Mecànica::Vibracions mecàniques, Railroad cars--Vibration, Vibració aleatòria, Frequency-domain analysis, Nonlinear dynamic interaction, High speed trains, Railway vehicle dynamics, Ferrocarrils -- Dinàmica, Freqüències de sistemes oscil·lants, Random vibration

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 89
    download downloads 114
  • 89
    views
    114
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
16
Top 10%
Top 10%
Top 10%
89
114
Green
hybrid