
In this paper, we propose an adaptive turbo decoding algorithm for high order modulation scheme combined with originally design for a standard rate-1/2 turbo decoder for B/QPSK modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Adaptive turbo decoder process the received symbols recursively to improved the performance. As the number of iterations increase, the execution time and power consumption also increase as well. The source of the latency and power consumption reduction is from the combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implemented the proposed scheme on a field-programmable gate array (FPGA) and compared its decoding speed with that of a conventional decoder. From the result of implementation, we confirm that the decoding speed of proposed adaptive decoding is faster than conventional scheme by 6.4 times.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
