
arXiv: 2208.12488
Acceleration of algorithms is becoming a crucial problem, if larger data sets are to be processed. Evaluation of algorithms is mostly done by using computational geometry approach and evaluation of computational complexity. However in todays engineering problems this approach does not respect that number of processed items is always limited and a significant role plays also speed of read/write operations. One general method how to speed up an algorithm is application of space subdivision technique and usually the orthogonal space subdivision is used. In this paper non-orthogonal subdivisions are described. The proposed approach can significantly improve memory consumption and run-time complexity. The proposed modified space subdivision techniques are demonstrated on two simple problems Point-in-Convex Polygon and Point-in-Convex Polyhedron tests.
4 pages, 8 figures
Computational Geometry (cs.CG), FOS: Computer and information sciences, I.3.5, Computer Science - Computational Geometry, 65D17, 65D18
Computational Geometry (cs.CG), FOS: Computer and information sciences, I.3.5, Computer Science - Computational Geometry, 65D17, 65D18
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
