Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparison of neural network backpropagation algorithms for electricity load forecasting

Authors: null Xinxing Pan; Brian Lee; null Chunrong Zhang;

A comparison of neural network backpropagation algorithms for electricity load forecasting

Abstract

Load forecasting plays a significant role in planning and operation of electrical power networks. Artificial neural networks have been extensively employed for load forecasting over the last 20 years, owing to their powerful non-linear mapping capability. A range of neural network training algorithms have been developed to solve different kinds of problems. Due to different goals of prediction and variation in size of datasets for load forecasting, the choice of algorithm to train the neural network can greatly influence the forecasting result. In this paper we consider different backpropagation training algorithms for medium term load forecasting and analyze each of the characteristics such as parameter setting complexity, training speed, convergence, prediction accuracy and result stability. From our case study, we conclude Bayesian Regulation Backpropagation to be the best overall choice for medium term load prediction. For cases where processing capability is limited, Resilient Backpropagation and Conjugate Gradient Backpropagation may be suitable alternative choices.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!