Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic Algorithm based Approach to Determine Optimal Collection Points for Big Data Gathering in Distributed Sensor Networks

Authors: Alekha Kumar Mishra; Suma Shree Thota; Simrat Bains; Meenakshi Das; Shruti Singhai; Siddhant Choudhary; Asis Kumar Tripathy;

Genetic Algorithm based Approach to Determine Optimal Collection Points for Big Data Gathering in Distributed Sensor Networks

Abstract

In recent of data, distributed sensor networks have become one of the primary source of generating big data. Therefore energy- efficient data gathering in densely distributed sensor networks is a demanding area of research. Among the various techniques of data acquisition, the mobile sink approach is highly suitable in densely distributed sensor networks. However, optimizing the trajectory of mobile sink is a crucial challenge to be addressed by researcher. The clustering-based Expectation Minimization technique proposed by Takaish et al. is an efficient approach to minimize the energy consumption of sensors while maintaining the node coverage. However, clustering of nodes may not ensure an optimal trajectory of mobile sink node. In this paper, we use genetic algorithm based approach to optimally select the data gathering points that minimize the distance of mobile sink trajectory to improve data collection time. The experimental results depict that the proposed technique is able to achieve optimal trajectory for mobile sink compared to Expectation Minimization technique.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!