
This paper proposes a novel application of a dynamic particle swarm optimization (PSO) algorithm for determining a maximum power point (MPP) of a solar photovoltaic (PV) panel. Solar PV cells have a non-linear V-I characteristic with a distinct MPP which depends on environmental factors such as temperature and irradiation. In order to continuously harvest maximum power from the solar PV panel, it always has to be operated at its MPP. The proposed dynamic PSO algorithm is one of the PSO algorithm variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO algorithm as linear time-varying parameters to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The obtained simulation results are compared with MPPs achieved using other algorithms such as the standard PSO, and Perturbation and Observation (P&O) algorithms under various atmospheric conditions. The results show that the dynamic PSO algorithm is better than the standard PSO and P&O algorithms for determining and tracking MPPs of solar PV panels.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
