Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environment Developm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environment Development and Sustainability
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company

Authors: Sathiya V.; Chinnadurai M.; Ramabalan S.; Appolloni A.;

Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company

Abstract

To ensure environment friendly products in the international supply chain scenario, an important initiative is reverse supply chain (RSC). The benefits (environmental and financial) from a RSC are influenced by disposal of reusable parts, cost factors and emissions during transportation, collection, recovery facilities, recycling, disassembly and remanufacturing. During designing a network for reverse supply chain, some objectives related to social, economic and ecological concerns are to be considered. This paper suggests two strategies for reducing the costs and emissions in a network of RSC. This research work considers design of RSC for a used-car resale company. First strategy outlines the design of a mobile robot—solar-powered automated guided vehicle (AGV) for reducing logistic cost and greenhouse gas (GHG) emissions. The second strategy proposes a new multi-objective optimization model to reduce the costs and emissions of GHG. Strict carbon caps constraint is used as a guideline for reducing emissions. The proposed strategies are tested for a real-world problem at Maruti True Value network design in Tamil Nadu and Puducherry region of India. Two algorithms namely Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) and Heterogeneous Multi-Objective Differential Evolution algorithm (HMODE) are proposed. HMODE is a new improved multi-objective optimization algorithm. To select the best optimal solution from the Pareto-optimal front, normalized weighted objective functions (NWOF) method is used. The strength or weakness of a Pareto-optimal front is evaluated by the metrics namely ratio of non-dominated individuals (RNI) and solution spread measure (SSM). Also, Algorithm Effort (AE) and Optimiser Overhead (OO) are utilized to find the computational effort of multi-objective optimization algorithms. Results proved that proposed strategies are worth enough to reduce the GHG emissions and costs.

Country
Italy
Keywords

Greenhouse gas (GHG) emissions, Robot, NSGA-II, HMODE, Multi-objective optimization, 629, Low carbon logistics, Automated guided vehicle (AGV), Settore SECS-P/08 - ECONOMIA E GESTIONE DELLE IMPRESE, Green supply chain management, Reverse supply chain

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze