Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://d-scholarship...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/aero47...
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Algorithm-Based Fault Tolerance for Machine Learning and Computer Vision under Neutron Radiation

Authors: Seth Roffe; Alan D. George;

Evaluation of Algorithm-Based Fault Tolerance for Machine Learning and Computer Vision under Neutron Radiation

Abstract

In the past decade, there has been a push for deployment of commercial-off-the-shelf (COTS) avionics due in part to cheaper costs and the desire for more performance. Traditional radiation-hardened processors are expensive and only provide limited processing power. With smaller mission budgets and the need for more computational power, low-cost and highperformance COTS solutions become more attractive for these missions. Due to the computational capacity enhancements provided by COTS technology, machine-learning and computer-vision applications are now being deployed on modern space missions. However, COTS electronics are highly susceptible to radiation environments. As a result, reliability in the underlying computations becomes a concern. Matrix multiplication is used in machine-learning and computer-vision applications as the main computation for decisions, making it a critical part of the application. Therefore, the large time and memory footprint of the matrix multiplication in machine-learning and computer-vision applications makes them even more susceptible to single-event upsets. In this paper, algorithm-based fault tolerance (ABFT) is investigated to mitigate silent data errors in machine learning and computer vision. ABFT is a methodology of data error detection and correction using information redundancy contained in separate data structures from the primary data. In matrix multiplication, ABFT consists of storing checksum data in vectors separate from the matrix to use for error detection and correction. Fault injection into a matrix-multiplication kernel was performed prior to irradiation. Irradiation was then performed on the kernel under wide-spectrum neutrons at Los Alamos Neutron Science Center to observe the mitigation effects of ABFT. Fault injections targeted towards the general-purpose registers show a $48 \times$ reduction in data errors using data-error mitigation with ABFT with a negligible change in run-time. Cross-section results from irradiation show a $5.3 \times$ improvement in reliability of using ABFT as opposed to no mitigation with a $> 99.9999$ confidence level. The results of this experiment demonstrate that ABFT is a viable solution for run-time error correction in matrix multiplication for machine-learning and computer-vision applications in future spacecraft.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%