Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
INRIA2
Conference object . 2023
License: CC BY
Data sources: INRIA2
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration

Authors: Akian, Marianne; Gaubert, Stéphane; Naepels, Ulysse; Terver, Basile;

Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration

Abstract

We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative value iteration and of Krasnoselskii-Mann damping. We derive parameterized complexity bounds for several classes of games satisfying irreducibility conditions. We show in particular that an $ε$-approximation of the value of an irreducible concurrent stochastic game can be computed in a number of iterations in $O(|\logε|)$ where the constant in the $O(\cdot)$ is explicit, depending on the smallest non-zero transition probabilities. This should be compared with a bound in $O(|ε|^{-1}|\log(ε)|)$ obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a $O(|ε|^{-1})$ bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also establish parameterized complexity bounds for entropy games, a class of matrix multiplication games introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by methods of variational analysis, establishing contraction properties of the relative Krasnoselskii-Mann iteration with respect to Hilbert's semi-norm.

25 pages, one figure

Keywords

FOS: Computer and information sciences, Stochastic mean-payoff games, Krasnoselskii-Mann fixed point algorithm, [MATH] Mathematics [math], relative value iteration, 004, 510, 91A15, 47H09, Theory of computation → Algorithmic game theory, Computer Science - Computer Science and Game Theory, Optimization and Control (math.OC), FOS: Mathematics, entropy games, Mathematics - Optimization and Control, concurrent games, Hilbert projective metric, Computer Science and Game Theory (cs.GT), ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities