Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Differential Equations
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.60692/6v...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/q7...
Other literature type . 2022
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bernstein Collocation Method for Solving MHD Jeffery–Hamel Blood Flow Problem with Error Estimations

طريقة بيرنشتاين للتلازم لحل مشكلة تدفق الدم بين جيفري وهامل مع تقديرات الخطأ
Authors: A. Sami Bataineh; Osman Raşit Işık; I. Hashim;

Bernstein Collocation Method for Solving MHD Jeffery–Hamel Blood Flow Problem with Error Estimations

Abstract

In this paper, the Bernstein collocation method (BCM) is used for the first time to solve the nonlinear magnetohydrodynamics (MHD) Jeffery–Hamel arterial blood flow issue. The flow model described by nonlinear partial differential equations is first transformed to a third-order one-dimensional equation. By using the Bernstein collocation method, the problem is transformed into a nonlinear system of algebraic equations. The residual correction procedure is used to estimate the error; it is simple to use and can be used even when the exact solution is unknown. In addition, the corrected Bernstein solution can be found. As a consequence, the solution is estimated using a numerical approach based on Bernstein polynomials, and the findings are verified by the 4th-order Runge–Kutta results. Comparison with the homotopy perturbation method shows that the present method gives much higher accuracy. The accuracy and efficiency of the proposed method were supported by the analysis of variance (ANOVA) and 95% of confidence on interval error. Finally, the results revealed that the MHD Jeffery–Hamel flow is directly proportional to the product of the angle between the plates α and Reynolds number Re .

Country
Turkey
Keywords

Heat Transfer Enhancement in Nanofluids, Biomedical Engineering, Geometry, FOS: Medical engineering, Mathematical analysis, Quantum mechanics, Convergence Analysis of Iterative Methods for Nonlinear Equations, Higher-Order Methods, Magnetohydrodynamics, Plasma, Engineering, Differential equation, QA1-939, FOS: Mathematics, Magnetohydrodynamics and electrohydrodynamics, Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems, Anomalous Diffusion Modeling and Analysis, Collocation method, Numerical Analysis, Physics, Applied mathematics, Numerical approximation and computational geometry (primarily algorithms), Bernstein collocation method (BCM), Modeling and Simulation, Physical Sciences, Nonlinear system, Flow (mathematics), Mathematics, Ordinary differential equation, Algebraic equation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 90
    download downloads 44
  • 90
    views
    44
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
90
44
Green
gold