Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Examining the effect of electrosynthesis conditions on the Ni-P alloy composition

Authors: Savchuk, Oleksandra; Sknar, Yuriy; Sknar, Irina; Cheremysinova, Anna; Kozlov, Yaroslav;

Examining the effect of electrosynthesis conditions on the Ni-P alloy composition

Abstract

The Ni–P alloys are widely used as catalysts, magnetic and wear resistant materials. Properties of the nickel-phosphorous alloys are defined by the composition. A highly regulated technique to obtain the alloys with specified composition is the electrosynthesis. It is a relevant task to establish dependences of the alloy composition on the process conditions. In the present work we examined the influence of electrolysis parameters on the Ni–P alloy composition, obtained from the methanesulfonate and sulfate electrolytes. It is shown that an increase in the concentration of sodium hypophosphite, acidity and temperature of the electrolyte increases phosphorus content in the alloy. It was established that when carrying out the electrosynthesis under galvanostatic mode, a change in the alloy composition is predetermined by the rate of phosphorus formation. Atomic phosphorus is formed as a result of the course of two reactions. There occurs the electroreduction and disproportionation of hypophosphite-anion involving hydrogen ions. An increase in the concentration of hydrogen ions in the near-electrode layer contributes to an increase in the rate of phosphorus formation and growing phosphorus content in the alloy. That is why the alloys with a higher content of phosphorus are formed at lower pH indices of the electrolyte and at higher temperature. It was established that weak buffer properties of the methanesulfonate electrolyte are responsible for the lowered phosphorus content in the synthesized alloy. High pH index in the near-electrode layer reduces the rate of phosphorus formation. Established regularities might prove very useful when designing new technologies of the Ni–P alloy electrosynthesis of specified composition from the methanesulfonate electrolyte.

Keywords

электросинтез; сплав Ni-P; метансульфонатный электролит; буферные свойства; образование фосфора, електросинтез; сплав Ni-P; метилсульфонатний електроліт; буферні властивості; утворення фосфору, electrosynthesis; Ni–P alloy; methanesulfonate electrolyte; buffer properties; phosphorus formation, UDC 544.654.2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold