Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.osti.gov...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ensuring statistical reproducibility of ocean model simulations in the age of hybrid computing

Authors: Salil Mahajan;

Ensuring statistical reproducibility of ocean model simulations in the age of hybrid computing

Abstract

Novel high performance computing systems that feature hybrid architectures require large scale code refactoring to unravel underlying exploitable parallelism. Such redesign can often be accompanied with machine-precision changes as the order of computation cannot always be maintained. For chaotic systems like climate models, these round-off level differences can grow rapidly. Systematic errors may also manifest initially as machine-precision differences. Isolating genuine round off level differences from such errors remains a challenge. Here, we apply two-sample equality of distribution tests to evaluate statistical reproducibility of the ocean model component of US Department of Energy's Energy Exascale Earth System Model (E3SM). A 2-year control simulation ensemble is compared to a modified ensemble as a test case - after a known non-bit-for-bit change in a model component is introduced - to evaluate the null hypothesis that the two ensembles are statistically indistinguishable. To quantify the false negative rates of these tests, we conduct a formal power analysis using a targeted suite of short simulation ensembles. The ensemble suite contains several perturbed ensembles, each with a progressively different climate than the baseline ensemble - obtained by perturbing the magnitude of a single model tuning parameter, the Gent and McWilliams κ, in a controlled manner. The null hypothesis is evaluated for each of perturbed ensembles using these tests. The power analysis informs on the detection limits of the tests for given ensemble size allowing model developers to evaluate the impact of an introduced non-bit-for-bit change to the model.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average