Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cellular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cellular Physiology
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cellular Physiology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dual effect of nifedipine on pregnant human myometrium contractility: Implication of TRPC1

Authors: Yart, Lucile Adeline; Frieden, Maud; Konig, Stéphane; Cohen, Marie-Benoîte; Martinez De Tejada Weber, Begona;

Dual effect of nifedipine on pregnant human myometrium contractility: Implication of TRPC1

Abstract

AbstractNifedipine, an L‐type voltage‐gated Ca2+ channel (L‐VGCC) blocker, is one of the most used tocolytics to treat preterm labor. In clinical practice, nifedipine efficiently decreases uterine contractions, but its efficacy is limited over time, and repeated or maintained nifedipine‐based tocolysis appears to be ineffective in preventing preterm birth. We aimed to understand why nifedipine has short‐lasting efficiency for the inhibition of uterine contractions. We used ex vivo term pregnant human myometrial strips treated with cumulative doses of nifedipine. We observed that nifedipine inhibited spontaneous myometrial contractions in tissues with high and regular spontaneous contractions. By contrast, nifedipine appeared to increase contractions in tissues with low and/or irregular spontaneous contractions. To investigate the molecular mechanisms activated by nifedipine in myometrial cells, we used the pregnant human myometrial cell line PHM1‐41 that does not express L‐VGCC. The in vitro measurement of intracellular Ca2+ showed that high doses of nifedipine induced an important intracellular Ca2+ entry in myometrial cells. The inhibition or downregulation of the genes encoding for store‐operated Ca2+ entry channels from the Orai and transient receptor potential‐canonical (TRPC) families in PHM1‐41 cells highlighted the implication of TRPC1 in nifedipine‐induced Ca2+ entry. In addition, the use of 2‐APB in combination with nifedipine on human myometrial strips tends to confirm that the pro‐contractile effect induced by nifedipine on myometrial tissues may involve the activation of TRPC channels.

Country
Switzerland
Related Organizations
Keywords

Preterm labor, Nifedipine, Tocolysis, 612, Cell Line, 618, Uterine Contraction, Pregnancy, Store-operated calcium entry channels, Humans, Myometrial contraction, Research Articles, L-type calcium channel, TRPC Cation Channels, Calcium Channel Blockers, Myometrium, Premature Birth, Female, Muscle Contraction, ddc: ddc:612, ddc: ddc:618

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid