Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Electrica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Electrical and Computer Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/d5...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/e4...
Other literature type . 2024
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of PV, Battery, and Supercapacitor-Based Bidirectional DC-DC Converter Using Fuzzy Logic Controller for HESS in DC Microgrid

تصميم محول DC - DC ثنائي الاتجاه القائم على الكهروضوئية والبطارية والمكثف الفائق باستخدام وحدة التحكم المنطقية الضبابية لـ HESS في الشبكة الدقيقة للتيار المستمر
Authors: Senthil Kumar R; V. Indragandhi; Belqasem Aljafari; Tareq Kareri;

Design of PV, Battery, and Supercapacitor-Based Bidirectional DC-DC Converter Using Fuzzy Logic Controller for HESS in DC Microgrid

Abstract

Renewable energy sources (RES) are becoming more popular globally as a reaction to critical energy concerns. Modern energy management technologies are used to maximize their efficiency while preserving the reliability of the grid. A hybrid energy storage system (HESS) connects to the DC microgrid through the bidirectional converter, allowing energy to be transferred among the battery and supercapacitor (SC). In this paper, a fuzzy logic control (FLC) technique is developed for PV-based DC microgrid systems that use both batteries and SCs. The proposed method uses the unbalanced energy from the battery pack to enhance the overall effectiveness of the HESS. The FLC approach is performed to validate under conditions of variable irradiance using MATLAB Simulink. When sudden changes in irradiance occur, the proposed FLC brings the voltage back to the desired level in terms of transient response like 33 ms settling times and 19% overshoot values. The results exhibit that the proposed method is more efficient in terms of time response, power output, increasing battery life, and ensuring a continuous supply of the PV system.

Keywords

Computer engineering. Computer hardware, Artificial intelligence, Power Electronics and Conversion Systems, Microgrid, Electrode, Lithium-ion Battery Management in Electric Vehicles, FOS: Mechanical engineering, Battery Management Systems, Capacitance, Control (management), Energy Storage Systems, Quantum mechanics, TK7885-7895, Engineering, DC-DC Converters, Microgrid Control, High-Frequency Power Conversion, FOS: Electrical engineering, electronic engineering, information engineering, Control theory (sociology), Electrical and Electronic Engineering, Battery (electricity), Flyback converter, Biology, Supercapacitor, Electronic engineering, Boost converter, Physics, Controller (irrigation), Forward converter, Voltage, Power (physics), Computer science, Agronomy, Fuzzy logic, Control and Systems Engineering, Electrical engineering, Automotive Engineering, Physical Sciences, Control and Synchronization in Microgrid Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold