Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-level methods to quantify risk assessment, source apportionment and identifying key risk areas of soil toxic elements in Ashi River watershed, China

Authors: Xiaomeng, Guo; Li, Wang; Fang, Ma; Yongqiang, You; Chang, Ju;

Multi-level methods to quantify risk assessment, source apportionment and identifying key risk areas of soil toxic elements in Ashi River watershed, China

Abstract

With the advancement of small watershed governance in agricultural production process, soil toxic element pollution issue in watersheds constitutes a recent research hot spot. The Ashi River watershed is an agriculture-dominated small watershed which is exposed to toxic element sources, posing high risk of toxic element pollution to the planting areas. In this study, collection of soil samples was carried out along the periphery of the river network, and the soil physicochemical parameters and toxic elements (As, Cd, Cr, Cu, Pb, and Zn) were analyzed. The results showed that: (1) The geo-accumulation index (Igeo) and potential ecological risk index were used to evaluate the pollution degree, and the contents of As, Cd, and Zn in some sampling sites exceeded risk screening values. Moreover, soils closer to mining sources were found to be more polluted; (2) Redundancy analysis confirmed the contribution rate relationship between environmental factors and toxic elements. C/N ratio, total carbon (C), and total potassium (K) exhibited significant relationships with toxic elements (P < 0.01 or P < 0.05), respectively. Moreover, geographic locations (longitude, latitude, and elevation) showed significant impacts on toxic element contents (except for Cu); (3) The apportionment of toxic element pollution sources by using principal component analysis showed that Pb, Zn, Cu, and Cd were mainly related to mining activities, while As was closely related to insecticide and herbicide, and Cr was mainly related to soil parent material and electroplating factory; (4) Through the integrated resistance base surface and toxic element sources combined with minimum cumulative resistance model, the toxic element risk areas were identified. The middle reaches corresponded to the extremely high risk zone, which undeniably requires the strengthening of the environmental management.

Related Organizations
Keywords

China, Risk Assessment, Soil, Rivers, Metals, Heavy, Soil Pollutants, Environmental Monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!