Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mìkrosistemi, Elektr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mìkrosistemi, Elektronìka ta Akustika
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mìkrosistemi, Elektronìka ta Akustika
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of microwave plasma generator

Authors: Volodymyr Volodymyrovych Perevertailo;

Simulation of microwave plasma generator

Abstract

Results of 3D simulation of the waveguide resonator tract together with the gas-discharge chamber were presented. On the basis of simulation the geometric parameters of the microwave generator in the matched mode with the maximum transmission of energy from the source of the microwave power to the region where the plasma generation will be ob-tained is calculated. The calculation was made on the basis of the condition for further combined use of the device with the magnetron sputtering system and it is intended for the activation of inert gas. In this paper, an analysis of the geo-metrical parameters of the plasma generator, taking into account the calculations, the scheme of the system and the principle of operation of the microwave generator plasma were described. Simulated microwave plasma generator has a wide range of applications, in particular, it can be used in solid surface treatment as an independent device, also as as-sisting device with the magnetron puttering system (thin-film coatings deposition, modification of the surface layer or its removal), or as part of the source of high-energy neutrals (very important in treatment of dielectric coatings), or in a microwave plasma lighting devices (general and special purposes). Vacuum-plasma methods – one of the most promising methods of coating deposition. Causes of that are their environmental safety, high purity of technological processes and product quality. It was possible to expand the opportunities of the method due to use of magnetron sputtering systems (MSS) and ion sources which generate directed streams of ions (both inert and chemically active) of working gases ac-celerated to certain energy. This in turn allows us to use them for cleaning of the substrates surface and influence of the ion flow on the coating during its growth to change its structure. Optical coatings are most often thin film dielectric of complex composition in the form of oxides, nitrides, carbides and their combinations, which are applied to the substrate in the reaction gas environment. Activation of gas is especially necessary when the source medium (source) in the form of unreacted metals and semiconductors is used. The best ways to stimulate the synthesis of optical coatings are non-thermal methods – the activation of gas in plasma of an electric discharge, followed by feeding to the substrate surface, its bombardment with gas ions and ultraviolet radiation.Ref. 12, fig. 9.

Представлены результаты 3D моделирования волноводно-резонаторного тракта совместно с газоразрядной камерой, путем чего были рассчитаны геометрические параметры СВЧ генератора в согласованном режиме с максимальной передачей энергии от источника СВЧ мощности в область, где будет происходить генерация плазмы. Расчет проводился, исходя из условия дальнейшего совместного использования устройства с системой магнетронного распыления и предназначен он для активации инертного газа. В данной работе представлен анализ составных частей генератора плазмы с учетом расчетов, представлено описание схемы работы системы и принцип работы СВЧ генератора плазмы.Библ. 12, рис. 9.

Представлено результати 3D моделювання хвилеводно-резонаторного тракту спільно з газорозрядною камерою, шляхом чого було розраховано геометричні параметри НВЧ генератора в узгодженому режимі з максимальною передачею енергії від джерела НВЧ потужності до області, де буде відбуватись генерація плазми. Розрахунок проводився, виходячи з умови подальшого сумісного використання пристрою з системою магнетронного розпилення і призначений він для активації інертного газу. У даній роботі представлено аналіз складових частин генератора плазми з урахуванням розрахунків, опис схеми роботи системи та принцип роботи НВЧ генератора плазми.Бібл. 12, рис. 9.

Keywords

надвисокочастотний генератор плазми; 3D моделювання; НВЧ тракт; хвилевід, сверхвысокочастотный генератор плазмы; 3D моделирование; СВЧ тракт; волновод, low-temperature plasma; microwave plasma generator; 3D simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities