Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2014 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint Source-Relay Optimization for Fixed Receivers in Multi-Antenna Multi-Relay Networks

Authors: Ikhlef A; Schober R;

Joint Source-Relay Optimization for Fixed Receivers in Multi-Antenna Multi-Relay Networks

Abstract

We jointly optimize the source and relay precoders for multi-antenna multi-relay networks employing a prefixed receiver. Prefixed receivers are of practical interest since they enable low complexity at the end-user's receiver as well as backward compatibility. To compute the source and relay precoders, we consider two different criteria. The objective of the first criterion is to maximize the worst stream signal-to-interference-plus-noise ratio (SINR) at the output of the receiver subject to source and relay transmit power constraints. Under the second criterion, we minimize the source and relay transmit powers subject to a certain quality-of-service constraint. Both optimization problems are non-convex. To solve them, we propose iterative alternating algorithms, where, in each iteration, we compute the precoders alternately, i.e., for each precoder optimization, we fix all the precoders except the one which is optimized. For both criteria, we formulate the optimization problem for the computation of the source precoder as a second order cone programming (SOCP) problem, for which the optimal solution can be found using interior point algorithms. For each relay precoder, we formulate the optimization problem as a semidefinite relaxation (SDR) problem for which ready-to-use solvers exist. If the solution to the SDR problem is not of rank one, matrix rank-one decomposition or randomization is applied. We also provide sufficient conditions for the convergence of the proposed iterative alternating algorithms to a fixed point. Simulation results show that the performance of the proposed algorithms is close to the performance achieved if the source, relay, and receiver filters are jointly optimized.

Related Organizations
Keywords

003

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze