Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/llm4co...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deriving Coding-Specific Sub-Models from LLMs using Resource-Efficient Pruning

Authors: Puccioni, Laura; Farshin, Alireza; Scazzariello, Mariano; Wang, Changjie; Chiesa, Marco; Kostic, Dejan;

Deriving Coding-Specific Sub-Models from LLMs using Resource-Efficient Pruning

Abstract

Large Language Models (LLMs) have demonstrated their exceptional performance in various complex code generation tasks. However, their broader adoption is limited by significant computational demands and high resource requirements, particularly memory and processing power. To mitigate such requirements, model pruning techniques are used to create more compact models with significantly fewer parameters. However, current approaches do not focus on the efficient extraction of programming-language-specific sub-models. In this work, we explore the idea of efficiently deriving coding-specific sub-models through unstructured pruning (i.e., Wanda). We investigate the impact of different domain-specific calibration datasets on pruning outcomes across three distinct domains and extend our analysis to extracting four language-specific sub-models: Python, Java, C++, and JavaScript. We are the first to efficiently extract programming-language-specific sub-models using appropriate calibration datasets while maintaining acceptable accuracy w.r.t. full models. We are also the first to provide analytical evidence that domain-specific tasks activate distinct regions within LLMs, supporting the creation of specialized sub-models through unstructured pruning. We believe that this work has significant potential to enhance LLM accessibility for coding by reducing computational requirements to enable local execution on consumer-grade hardware, and supporting faster inference times critical for real-time development feedback.

Keywords

I.2.2, D.1.2, Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, I.2.6, I.2.2; I.2.6; D.1.2, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities