
Large Language Models (LLMs) have demonstrated their exceptional performance in various complex code generation tasks. However, their broader adoption is limited by significant computational demands and high resource requirements, particularly memory and processing power. To mitigate such requirements, model pruning techniques are used to create more compact models with significantly fewer parameters. However, current approaches do not focus on the efficient extraction of programming-language-specific sub-models. In this work, we explore the idea of efficiently deriving coding-specific sub-models through unstructured pruning (i.e., Wanda). We investigate the impact of different domain-specific calibration datasets on pruning outcomes across three distinct domains and extend our analysis to extracting four language-specific sub-models: Python, Java, C++, and JavaScript. We are the first to efficiently extract programming-language-specific sub-models using appropriate calibration datasets while maintaining acceptable accuracy w.r.t. full models. We are also the first to provide analytical evidence that domain-specific tasks activate distinct regions within LLMs, supporting the creation of specialized sub-models through unstructured pruning. We believe that this work has significant potential to enhance LLM accessibility for coding by reducing computational requirements to enable local execution on consumer-grade hardware, and supporting faster inference times critical for real-time development feedback.
I.2.2, D.1.2, Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, I.2.6, I.2.2; I.2.6; D.1.2, Machine Learning (cs.LG)
I.2.2, D.1.2, Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, I.2.6, I.2.2; I.2.6; D.1.2, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
