
High-performance computing for climate models has always been an interesting research area. It is valuable to nest a regional climate model within a global climate model, but large-scale simulation of the nesting or coupling severely challenges to the development of efficient parallel algorithms that fit well into multi-core clusters. This paper first presents research on the coupling of the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model version 4.0 and the Weather Research and Forecasting model, then proposes an efficient parallel algorithm of the coupling. The algorithm includes initialization of input data, decomposition of computing grid and processes, parallel computing of component models, and data exchange by a coupler. By calling some subroutines of the Model Coupling Toolkit, the parallelization of the proposed algorithm is implemented. Experiments show that the parallel algorithm is very effective and scalable. The parallel efficiency of the algorithm on 1,024 CPU cores can reach up to 70%. Moreover, its parallel efficiency with respect to weak scalability is 72.56% on a multi-core cluster.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
