Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2016 . Peer-reviewed
License: IEEE Open Access
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2016
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-Efficient Transceiver Design for Hybrid Sub-Array Architecture MIMO Systems

Authors: Shiwen He; Chenhao Qi 0001; Yongpeng Wu 0001; Yongming Huang 0001;

Energy-Efficient Transceiver Design for Hybrid Sub-Array Architecture MIMO Systems

Abstract

Millimeter-wave (mmWave) communication operated in frequency bands between 30 and 300 GHz has attracted extensive attention due to the potential ability of offering orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multi-element antenna arrays. MmWave system may exploit the hybrid analog and digital precoding to achieve simultaneously the diversity, array and multiplexing gain with a lower cost of implementation. Motivated by this, in this paper, we investigate the design of hybrid precoder and combiner with sub-connected architecture, where each radio frequency chain is connected to only a subset of base station (BS) antennas from the perspective of energy efficient transmission. The problem of interest is a non-convex and NP-hard problem that is difficult to solve directly. In order to address it, we resort to design a two-layer optimization method to solve the problem of interest by exploiting jointly the interference alignment and fractional programming. First, the analog precoder and combiner are optimized via the alternating-direction optimization method (ADOM) where the phase shifter can be easily adjusted with an analytical structure. Then, we optimize the digital precoder and combiner based on an effective multiple-input multiple-output (MIMO) channel coefficient. The convergence of the proposed algorithms is proved using the monotonic boundary theorem and fractional programming theory. Extensive simulation results are given to validate the effectiveness of the presented method and to evaluate the energy efficiency performance under various system configurations.

22 pages, 8 figures, accepted by IEEE ACCESS 2017

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), analog precoding and combining, interference alignment, multiple-input multiple-output (MIMO) system, Electrical engineering. Electronics. Nuclear engineering, Millimeter-wave communication, energy efficiency, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 1%
Green
gold