
A comparative study of Hierarchical Enumerative Coding (HENUC) for FPGA and DSP implementation is presented. HENUC is a lossless fixed-point entropy coding algorithm employed by a wavelet-based image encoder, which provides good compression performance for the locally stationary image data. It has been implemented in our previous work on an Altera's 40nm Stratix IV EP4SGX230 FPGA as a hardware IP accelerator in a Nios II based system. In this paper, we implemented it on a Texas Instruments's (TI) 40nm Integra C6A816x/AM389x DSP. We present experimental results regarding the execution time, resource utilization and core power consumption of the two implementations and we evaluate their throughput and power efficiency. Our results show that a highly parallelized FPGA implementation at 100MHz is 12.3× faster than a highly tuned DSP implementation running at 1.5 GHz and consumes 2.4× less power, they also show that the proposed algorithm is more suitable for hardware implementation.
[SPI.TRON] Engineering Sciences [physics]/Electronics
[SPI.TRON] Engineering Sciences [physics]/Electronics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
