Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IFAC Proceedings Vol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IFAC Proceedings Volumes
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximate Dynamic Programming Algorithms for Multidimensional Inventory Optimization Problems

Authors: Mustafa Çimen; Christopher Kirkbride;

Approximate Dynamic Programming Algorithms for Multidimensional Inventory Optimization Problems

Abstract

An important issue in the supply chain literature concerns the optimization of inventory decisions. Single-product inventory problems are widely studied and have been optimally solved under a variety of assumptions. However, as supply chain systems become more complex, inventory decisions become more complicated for which the methods/approaches for optimizing single-product inventory systems are incapable of deriving optimal policies. Manufacturing process flexibility provides an example of such complex application areas. Interrelated products and production facilities form a highly multidimensional, non-decomposable system for which optimal policies cannot be obtained by classical methods. We propose the methodology of Approximate Dynamic Programming (ADP) to overcome the computational challenge imposed by this multidimensionality. Incorporating a sample backup approach, ADP develops policies by utilizing only a fraction of the computations required by classical Dynamic Programming. However, there are no studies in the literature that optimize production decisions in a stochastic, multifactory, multiproduct inventory system of this complexity. This paper aims to explore the feasibility of ADP algorithms for this application. We present the results from a series of numerical experiments that establish the strong performance of policies developed via temporal difference ADP algorithms in comparison to optimal policies.

Country
United Kingdom
Related Organizations
Keywords

330, 650

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!