
Dans cet article, les auteurs adaptent la méthode des caractéristiques à la résolution numérique de problèmes de convection-diffusion stationnaires. Plus précisément, au problème \(u\cdot \nabla y-v\nabla y=f\) dans \(\Omega\); \(y=g\) sur \(\Gamma\). On associe le problème d'évolution \[ (1)\quad \partial \tilde y/\partial t+\tilde u.\nabla \tilde y=f\quad p.p.\quad dans\quad (0,T);\quad \tilde y_{| \Gamma}=\tilde g,\quad \tilde y(x,0)=y(x) \] avec \(\tilde u(x,t)=u(x)\), \(\tilde f(x,t)=f(x)\), \(\tilde g(x,t)=g(x)\) pour tout \(t\in [0,T].\) On discrétise (1) en t \[ (2)\quad (\tilde y^{m+1}(x)-\tilde y^ m(X^ k(x)))/k-v \nabla \tilde y^{m+1}(x)=f(x); \quad \tilde y^{m+1}=g\quad sur\quad \Gamma,\quad \tilde y^ o=y\quad dans\quad \Omega, \] où \(X^ k(x)=S(x,(m+1)k\); mk) pour tout m, où S(x,t;\(\tau)\) est la résolution unique du problème de Cauchy \[ dS/d\tau =u(S);\quad S(x,t;t)=x. \] On discrétise ensuite (2) en espace par éléments finis pour aboutir à un schéma numérique de résolution, avec estimation de l'erreur. Dans le cas monodimensionnel et pour k petit, les schémas correspondent au schéma décentré classique.
Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs, convergence, iterative algorithm, Method of lines for boundary value problems involving PDEs, Initial-boundary value problems for second-order parabolic equations, finite elements, steady-state convective-diffusive problems, error estimate, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs, convergence, iterative algorithm, Method of lines for boundary value problems involving PDEs, Initial-boundary value problems for second-order parabolic equations, finite elements, steady-state convective-diffusive problems, error estimate, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
