Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/re5906...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC SA
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Label Requirements Classification with Large Taxonomies

Authors: Abdeen, Waleed; Unterkalmsteiner, Michael; Wnuk, Krzysztof; Chirtoglou, Alexandros; Schimanski, Christoph; Goli, Heja;

Multi-Label Requirements Classification with Large Taxonomies

Abstract

Classification aids software development activities by organizing requirements in classes for easier access and retrieval. The majority of requirements classification research has, so far, focused on binary or multi-class classification. Multi-label classification with large taxonomies could aid requirements traceability but is prohibitively costly with supervised training. Hence, we investigate zero-short learning to evaluate the feasibility of multi-label requirements classification with large taxonomies. We associated, together with domain experts from the industry, 129 requirements with 769 labels from taxonomies ranging between 250 and 1183 classes. Then, we conducted a controlled experiment to study the impact of the type of classifier, the hierarchy, and the structural characteristics of taxonomies on the classification performance. The results show that: (1) The sentence-based classifier had a significantly higher recall compared to the word-based classifier; however, the precision and F1-score did not improve significantly. (2) The hierarchical classification strategy did not always improve the performance of requirements classification. (3) The total and leaf nodes of the taxonomies have a strong negative correlation with the recall of the hierarchical sentence-based classifier. We investigate the problem of multi-label requirements classification with large taxonomies, illustrate a systematic process to create a ground truth involving industry participants, and provide an analysis of different classification pipelines using zero-shot learning.

Published by IEEE at the Requirements Engineering Conference (2024) - Industrial Innovation Track

Keywords

FOS: Computer and information sciences, Domain specific, Multi-label classifications, Programvaruteknik, Large-scales, Requirements traceability, requirements classification, Requirements classifications, multi-label, Computer Science - Software Engineering, Multi-labels, Multi-class classification, Software design, domain-specific tax-onomy, Requirements engineering, Software Engineering, Taxation, Software Engineering (cs.SE), Development activity, large-scale, Multiprogramming, Sentence-based, Taxonomies, Zero-shot learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze