Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Numerical Algorithmsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Numerical Algorithms
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RMPIA: a new algorithm for computing the Lagrange matrix interpolation polynomials

Authors: Messaoudi, Abderrahim; Sadok, Hassane;

RMPIA: a new algorithm for computing the Lagrange matrix interpolation polynomials

Abstract

Let σ0,σ1,⋯,σn be a set of n+ 1 distinct real numbers (i.e., σi≠σj, for i≠j) and F0,F1,⋯ ,Fn, be given real s × r matrices, we know that there exists a unique s × r matrix polynomial Pn(λ) of degree n such that Pn(σi) = Fi, for i = 0,1,⋯ ,n, Pn is the matrix interpolation polynomial for the set {(σi,Fi),i = 0,1,⋯ ,n}. The matrix polynomial Pn(λ) can be computed by using the Lagrange formula or the barycentric method. This paper presents a new method for computing matrix interpolation polynomials. We will reformulate the Lagrange matrix interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Recursive Matrix Polynomial Interpolation Algorithm (RMPIA) in full and simplified versions, and some properties of this algorithm will be studied. Cost and storage of this algorithm with the classical formulas will be studied and some examples will also be given.

Keywords

Numerical computation of matrix exponential and similar matrix functions, Matrix exponential and similar functions of matrices, Sylvester's identity, Matrix polynomial, Schur complement, Sylvester’s identity, [MATH] Mathematics [math], Lagrange matrix polynomial interpolation problem, Recursive polynomial interpolation algorithm, matrix polynomial, recursive polynomial interpolation algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!