
arXiv: 1804.01040
Classically, a noncommutative function is defined on a graded domain of tuples of square matrices. In this note, we introduce a notion of a noncommutative function defined on a domain Ω⊂B(H)d, where H is an infinite dimensional Hilbert space. Inverse and implicit function theorems in this setting are established. When these operatorial noncommutative functions are suitably continuous in the strong operator topology, a noncommutative dilation-theoretic construction is used to show that the assumptions on their derivatives may be relaxed from boundedness below to injectivity.
Mathematics - Functional Analysis, 46L52, 47A56, 47J07, FOS: Mathematics, Functional Analysis (math.FA)
Mathematics - Functional Analysis, 46L52, 47A56, 47J07, FOS: Mathematics, Functional Analysis (math.FA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
