Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Soil a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Soil and Water Conservation Research
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rainfall erosivity estimation over the Tibetan plateau based on high spatial-temporal resolution rainfall records

Authors: Yueli Chen; Xingwu Duan; Guo Zhang; Minghu Ding; Shaojuan Lu;

Rainfall erosivity estimation over the Tibetan plateau based on high spatial-temporal resolution rainfall records

Abstract

The Tibetan Plateau (TP) in China has been experiencing severe water erosion because of climate warming. The rapid development of weather station network provides an opportunity to improve our understanding of rainfall erosivity in the TP. In this study, 1-min precipitation data obtained from 1226 weather stations during 2018–2019 were used to estimate rainfall erosivity, and subsequently the spatial-temporal patterns of rainfall erosivity in the TP were identified. The mean annual erosive rainfall was 295 mm, which accounted for 53% of the annual rainfall. An average of 14 erosive events occurred yearly per weather station, with the erosive events in the wet season being more likely to extend beyond midnight. In these cases, the precipitation amounts of the erosive events were found to be higher than those of the daily precipitations, which may result in implicit bias as the daily precipitation data were used for estimating the rainfall erosivity. The mean annual rainfall erosivity in the TP was 528 MJ mm·ha−1·h−1, with a broader range of 0–3402 MJ mm·ha−1·h−1, indicating a significant spatial variability. Regions with the highest mean annual rainfall erosivity were located in the forest zones, followed by steppe and desert zones. Finally, the precipitation phase records obtained from 140 weather stations showed that snowfall events slightly impacted the accuracy of rainfall erosivity calculation, but attention should be paid to the erosion process of snowmelt in the inner part of the TP. These results can be used as the reference data for soil erosion prediction in normal precipitation years.

Related Organizations
Keywords

Spatial-temporal patterns, Erosive rain, Tibetan Plateau, Rainfall erosivity, TA1-2040, Engineering (General). Civil engineering (General), 1-Min precipitation data

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
gold