Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Segmentation and distribution of watershed using K-Modes clustering algorithm and Davies-Bouldin index based on geographic information system (GIS)

Authors: Muhammad Farid Fahmi; Yoyon K. Suprapto; null Wirawan;

Segmentation and distribution of watershed using K-Modes clustering algorithm and Davies-Bouldin index based on geographic information system (GIS)

Abstract

The watershed rehabilitation success rate have not been up, is the result of policies in watershed rehabilitation strategies that are less precise. From the above problems, we need a study that can provide a reference or any other alternative in determining priority watersheds to be rehabilitated, one through data mining. This paper uses a case study of Watershed data which are grouped using K-modes clustering algorithm based on its characteristics parameters. Watershed groupped using K-modes clustering then optimized using Davies-Bouildin Index (DBI) to get the number of clusters with the optimal level of similarity and visualized using GIS to obtain distribution maps. From trial on the Watershed of Tondano It was known that the cluster number four (4) is the optimal cluster number with an average DBI value of 0.672778, or 19.93%. The clustering results show that the wateshed in cluster 3 with 332 watershed which mostly scattered in the South Minahasa (24.7%) is a critical watershed compared to other clusters. the result of the clustering process is not much different or 90.64% similar when compared to the calculation of the watershed manually, that can be used as alternative to other reference in planning the rehabilitation of the watershed.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!