Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variational Bayes and the Principal Component Analysis Coupled With Bayesian Regulation Backpropagation Network to Retrieve Total Precipitable Water (TPW) From GCOM-W1/AMSR2

Authors: Tanvir Islam; Prashant K. Srivastava; George P. Petropoulos;

Variational Bayes and the Principal Component Analysis Coupled With Bayesian Regulation Backpropagation Network to Retrieve Total Precipitable Water (TPW) From GCOM-W1/AMSR2

Abstract

The Bayes Principal components Backpropagation Network (BPBN) is proposed to retrieve total precipitable water (TPW) from the AMSR2 instrument on-board recently launched GCOM-W1 satellite. The proposed algorithm is a physical inversion method, developed using a radiative transfer model to assure that the geophysical retrieval of the TPW is consistent with the radiative transfer theory. The algorithm is comprised of- a Bayes variational algorithm for bias correction, the principal components transformation of the bias-corrected radiometric brightness temperature, and finally, a Bayesian regulation backpropagation network to translate the principal components to TPW estimate in the geophysical space. The algorithm is applicable over ocean, and in clear and cloudy scenes. However, the rainy and sea ice scenes are excluded in the retrieval. A random forest classifier and NASA sea ice temperature retrieval algorithm are used to detect and suppress the rainy and sea ice scenes, respectively. On the whole, the BPBN is a “comprehensive” algorithm, from discarding the redundant scenes to transforming the radiometric information to TPW estimate, and doesn’t use any auxiliary data. This will make it very useful for assimilating into the numerical weather prediction models. The retrieval accuracy of the BPBN algorithm is around 2 $\hbox{kg/m}^2$ .

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold