Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Article . 2019
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2019
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SPARKLING: variable‐density k‐space filling curves for accelerated T2*‐weighted MRI

Authors: Lazarus, Carole; Weiss, Pierre; Chauffert, Nicolas; Mauconduit, Franck; El Gueddari, Loubna; Destrieux, Christophe; Zemmoura, Ilyess; +2 Authors

SPARKLING: variable‐density k‐space filling curves for accelerated T2*‐weighted MRI

Abstract

PurposeTo present a new optimition‐driven design of optimal k‐space trajectories in the context of compressed sensing: Spreading Projection Algorithm for Rapid K‐space sampLING (SPARKLING).TheoryThe SPARKLING algorithm is a versatile method inspired from stippling techniques that automatically generates optimized sampling patterns compatible with MR hardware constraints on maximum gradient amplitude and slew rate. These non‐Cartesian sampling curves are designed to comply with key criteria for optimal sampling: a controlled distribution of samples (e.g., variable density) and a locally uniform k‐space coverage.MethodsEx vivo and in vivo prospective ‐weighted acquisitions were performed on a 7‐Tesla scanner using the SPARKLING trajectories for various setups and target densities. Our method was compared to radial and variable‐density spiral trajectories for high‐resolution imaging.ResultsCombining sampling efficiency with compressed sensing, the proposed sampling patterns allowed up to 20‐fold reductions in MR scan time (compared to fully sampled Cartesian acquisitions) for two‐dimensional ‐weighted imaging without deterioration of image quality, as demonstrated by our experimental results at 7 Tesla on in vivo human brains for a high in‐plane resolution of 390 μm. In comparison to existing non‐Cartesian sampling strategies, the proposed technique also yielded superior image quality.ConclusionsThe proposed optimization‐driven design of k‐space trajectories is a versatile framework that is able to enhance MR sampling performance in the context of compressed sensing.

Country
France
Keywords

[INFO.INFO-IM] Computer Science [cs]/Medical Imaging, 610, MESH: Algorithms, Signal-To-Noise Ratio, 530, variable density, MESH: Magnetic Resonance Imaging, Imaging, MESH: Brain, Computer-Assisted, [INFO.INFO-IM]Computer Science [cs]/Medical Imaging, Image Processing, Computer-Assisted, Humans, k-space trajectories, MESH: Signal-To-Noise Ratio, compressed sensing, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing, MESH: Humans, Phantoms, Imaging, MESH: Phantoms, Brain, Magnetic Resonance Imaging, MESH: Image Processing, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing, optimization, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 1%
Green
bronze