
pmid: 33119528
In recent years, both distributed scheduling problem and energy-efficient scheduling have attracted much attention. As the integration of these two problems, the distributed energy-efficient scheduling problem is of great realistic significance. To the best of our knowledge, the distributed energy-efficient parallel machines scheduling problem (DEPMSP) has not been studied yet. This article aims to solve DEPMSP by integrating factory assignment and machine assignment into an extended machine assignment to handle the coupled relations of subproblems. A knowledge-based two-population optimization (KTPO) algorithm is proposed to minimize total energy consumption and total tardiness simultaneously. Five properties are derived by analyzing the characteristics of DEPMSP. The population is initialized by using two heuristics based on problem-specific knowledge and a random heuristic. The nondominated sorting genetic algorithm-II and differential evolution perform cooperatively on the population in parallel. Moreover, two knowledge-based local search operators are proposed to enhance the exploitation. Extensive simulation experiments are conducted by comparing KTPO with four algorithms from the literature. The comparative results and statistical analysis demonstrate the effectiveness and advantages of KTPO in solving DEPMSP.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
