Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/vlsi-s...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration

Authors: FORNO, EVELINA; Andrea Acquaviva; Yuki Kobayashi; Enrico Macii; Gianvito Urgese;

A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration

Abstract

Quantum Annealing (QA) is an emerging technique, derived from Simulated Annealing, providing metaheuristics for multivariable optimisation problems. Studies have shown that it can be applied to solve NP-hard problems with faster convergence and better quality of result than other traditional heuristics, with potential applications in a variety of fields, from transport logistics to circuit synthesis and optimisation. In this paper, we present a hardware architecture implementing a QA-based solver for the Multidimensional Knapsack Problem, designed to improve the performance of the algorithm by exploiting parallelised computation. We synthesised the architecture using as a target an Altera FPGA board and simulated the execution for solving a set of benchmarks available in the literature. Simulation results show that the proposed implementation is about 100 times faster than a single-thread general-purpose CPU without impact on the accuracy of the solution.

Keywords

Quantum Annealing; Simulating Annealing; Parallel Hardware Architecture; Multidimensional Knapsack Problem; FPGA; Algorithm Acceleration, Quantum Annealing, Simulating Annealing, Parallel Hardware Architecture, Multidimensional Knapsack Problem, FPGA, Algorithm Acceleration,

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green