Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.26434/chemr...
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Langmuir
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Langmuir
Article . 2025
Langmuir
Article . 2025
License: CC BY
Data sources: u:cris
Langmuir
Article . 2024 . Peer-reviewed
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Patchy charge distribution affects the pH in protein solutions during dialysis.

Authors: Sebastian P. Pineda; Pablo M. Blanco; Roman Staňo; Peter Košovan;

Patchy charge distribution affects the pH in protein solutions during dialysis.

Abstract

When using dialysis, ultra- or dia-filtration to purify protein solutions, a dialysis buffer in the permeate is employed to set the pH in the protein solution. Failure to achieve the target pH may cause undesired precipitation of the valuable product. However, pH in the permeate differs from that in the retentate, which contains the proteins. Experimental optimization of the process conditions is time-consuming and expensive while accurate theoretical predictions still pose a major challenge. Current models of dialysis account for the Donnan equilibrium, acid-base properties and ion-protein interactions but they neglect the patchy distribution of ionizable groups on the proteins and its impact on the solution properties. Here, we present a simplified computational model of a colloidal particle with weakly acidic sites on the surface, organized in patches. This minimalistic model allows systematic variation of the relevant parameters, while simultaneously demonstrating the essential physics governing the acid-base equilibria in protein solutions. Using molecular simulations in the grand-reaction ensemble, we demonstrate that interactions between ionizable sites significantly affect the nanoparticle charge and thereby contribute to pH difference between the permeate and retentate. We show that the significance of this contribution increases if the ionizable sites are located on a smaller patch. Protein solutions are governed by the same physics as our simple model In this context, our results show that models which aim to quantitatively predict the pH in protein solutions during dialysis need to account for the patchy distribution of ionizable sites on the protein surface.

Keywords

Solutions, 104010 Makromolekulare Chemie, 102009 Computer simulation, 104010 Macromolecular chemistry, 103015 Kondensierte Materie, 103015 Condensed matter, Proteins, Hydrogen-Ion Concentration, Dialysis, 102009 Computersimulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid
Funded by