Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear precoder design for base station energy cooperation in DC microgrids

Authors: Shama Naz Islam; Md Apel Mahmud; Sajeeb Saha; Md Enamul Haque;

Linear precoder design for base station energy cooperation in DC microgrids

Abstract

In this study, the energy data transfer problem in a DC microgrid with multiple renewable powered base stations (BSs) is considered. These BSs can share the renewable generation among each other. The energy cooperation is optimised by the control unit. For effective energy cooperation, energy data needs to be transferred from BSs to the control unit with low latency and high reliability. For cellular enabled microgrid communication, the energy data exchange and cellular communication both use the same communication resources. Thus, there will be interference at the control unit and cellular user (CU), which degrades the reliability of energy data transfer. To solve this problem, a linear precoding technique is designed to minimise the mean square error of the desired messages at the control unit, BSs, and CU while the interferences are kept at a predefined level. For the designed precoders, the expressions of signal‐to‐interference‐plus‐noise ratio are formulated and the error performance is analysed. Numerical simulation has been performed to compare the considered precoding technique with other precoding techniques. The simulation results demonstrate that optimum precoding can improve the error performance at the control unit, BSs, and CU by 1, 5, and 3 dB, respectively.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
gold