Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cluster Computingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cluster Computing
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classified enhancement model for big data storage reliability based on Boolean satisfiability problem

Authors: Hong Huang; Latifur Khan; Zhou Shaohua;

Classified enhancement model for big data storage reliability based on Boolean satisfiability problem

Abstract

Disk reliability is a serious problem in the big data foundation environment. Although the reliability of disk drives has greatly improved over the past few years, they are still the most vulnerable core components in the server. If they fail, the result can be catastrophic: it can take some days to recover data, sometimes data lost forever. These are unacceptable for some important data. XOR parity is a typical method to generate reliability syndrome, thus improving the reliability of the data. In practice, we find that the data is still likely to be lost. In most storage systems reliability improvements are achieved through the allocation of additional disks in Redundant Arrays of Independent Disks (RAID), which will increase the hardware costs, thus it will be very difficult for cost-constrained environments. Therefore, how to improve the data integrity without raising the hardware cost has aroused much interest of big data researchers. This challenge is when creating non-traditional RAID geometries, care must be taken to respect data dependence relationships to ensure that the new RAID strategy improves reliability, which is a NP-hard problem. In this paper, we present an approach for characterizing these challenges using high-dimension variants of the n-queens problem that enables performable solutions via the SAT solver MiniSAT, and use the greedy algorithm to analyze the queen’s attack domain, as a basis for reliability syndrome generation. A large number of experiments show that the approach proposed in this paper is feasible in software-defined data centers and the performance of the algorithm can meet the current requirements of the big data environment.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!