
In many of the applied sciences, it is common that the forms of empirical relationships are almost completely unknown prior to study. Scatterplot smoothers used in nonparametric regression methods have considerable potential to ease the burden of model specification that a researcher would otherwise face in this situation. Occasionally the researcher will know the sign of the first or second derivatives, or both. This article develops a smoothing method that can incorporate this kind of information. I show that cubic regression splines with bounds on the coefficients offer a simple and effective approximation to monotonic, convex or concave transformations. I also discuss methods for testing whether the constraints should be imposed. Monte Carlo results indicate that this method, dubbed CoSmo, has a lower approximation error than either locally weighted regression or two other constrained smoothing methods. CoSmo has many potential applications and should be especially useful in applied econometrics. As a...
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
