
arXiv: 1304.7603
This article makes the key observation that when using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is not always the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This motivates our definition of a Truth Table Invariant CAD (TTICAD). We generalise the theory of equational constraints to design an algorithm which will efficiently construct a TTICAD for a wide class of problems, producing stronger results than when using equational constraints alone. The algorithm is implemented fully in Maple and we present promising results from experimentation.
To appear in the proceedings of the 38th International Symposium on Symbolic and Algebraic Computation (ISSAC '13)
Computer Science - Symbolic Computation, FOS: Computer and information sciences, Symbolic Computation (cs.SC), 68W30, 03C10, I.1.2
Computer Science - Symbolic Computation, FOS: Computer and information sciences, Symbolic Computation (cs.SC), 68W30, 03C10, I.1.2
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
